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Abstract 

A general mathematical model is presented which 
can describe a large variety of structures showing 
superstructure effects. In particular the model can 
take into account deviations, both of displacive and 
of replacive type, of the substructural part from ideal 
pseudotranslational symmetry. The formulation is 
used to predict statistical effects of deviations on 
diffraction data. It is shown that the scattering power 
of the substructural part may be estimated via a 
statistical analysis of diffraction data for ideal 
pseudotranslational symmetry or for displacive 
deviation from it, while it is not estimable in the case 
of replacive deviation. 

Symbols and abbreviations 

h = (h, k, 1): vectorial index of a reflection. 
f :  atomic scattering factor. The thermal factor is 
included; anomalous dispersion is not. 
Fh: structure factor with vectorial index h. 
Cs = (Rs, Ts): sth symmetry operator. R, is the rota- 
tional part, T~ the translational part. 
N: number of atoms in the cell. 
m: order of the space group (it coincides with the 
number of symmetry operators). 
ui: ith pseudotranslation in the unit cell. 
hi: order of the pseudotranslation ui. 

0108-7673/88/020176-08503.00 

p: number of atoms (symmetry-equivalent included) 
whose positions are related by the pseudotransla- 
tions u. 
q: number of atoms (symmetry-equivalent included) 
whose positions are not related by any 
pseudotranslation. 
tp: number of independent atoms which generate the 
p atoms when the pseudotranslations ui and the sym- 
metry operators C~, s -- 1 , . . . ,  m are applied. 
t o" number of independent atoms which generate the 
q atoms by application of the symmetry operators 
Cs, s - - 1 , . . . , m .  
p(r): electron density function in the unit cell. 
pp (r), pq (r): electron density functions corresponding 
to the p atoms and q atoms respectively. 
eh: weight of the reflexion h in Wiison's statistics. 
~tp, ~t~, Y.p, ~q, ~N ---- ~ f ]  (thermal factor included) 
where the summation is extended to the tp, tq, p, q, 
N atoms respectively. 
(Fh)p, (Fh)q: structure factors relative to the p and to 
the q atoms respectively. 
E~, = Fh/(e h ~N )1/2: normalized structure factor in the 
absence of any information on pseudotranslational 
symmetry. 
Eh: normalized structure factor if prior information 
on pseudotranslational symmetry is taken into 
account. 
~ h , ~ k , . . . :  phase OfEh,  E k , . . . .  
[tr,]p, [O'r]q, [O'r]N,...---- ~ Z~, where Zj is the atomic 
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number of the j th  atom and the summation is made 
over the p, q, N , . . .  atoms. 
C h = { OLh[ or2]p -Jr- [ Or2] q}-1/2.  

Io: modified Bessel function of order zero. 

nl--I n2--1 n3--1 m 

E = E  Z E . . . .  2 
~'1,~'2,~'3,...,S PI=O u2=O ~'3=0 S=I 

Papers by Cascarano, Giacovazzo & Lui6 (1985, 
1987) will be denoted respectively as papers I and II. 
The next paper of this series (Cascarano, Giacovazzo 
& Lui6, 1988) will be referred to as paper IV. 

Other symbols are defined in the text. 

1. Introduction 

The popularity of direct methods is mostly due to the 
fact that no structural information is strictly required 
for their success in solving crystal structures. In the 
absence of any information atoms are supposed to 
be uniformly distributed in the unit cell. If this condi- 
tion is strongly violated, for example for crystal struc- 
tures which have superstructure characteristics, then 
the crystal structure solution is usually difficult. The 
suggestion by Hauptman & Karle (1959) of rescaling 
normalized structure factors for the various classes 
of reflexions sometimes succeeds but it often proves 
unable to solve structures. 

More recently some important contributions by 
Fan Hai-fu, Yao Jia-xing, Main & Woolfson (1983), 
B/Shme (1982, 1983) and Gramlich (1984) have given 
important insights into the problem. In all these 
methods renormalization was combined with suitable 
probabilistic considerations in order to provide better 
estimations of triplet invariants. 

The present paper aims at generalizing the mathe- 
matical model which was used in papers I and II to 
describe pseudotranslational symmetries so as to 
make it more suitable for real crystal structures. In 
paper IV a more robust probabilistic approach will 
be described which aims to determine at the same 
time the positions both of the substructural and of 
the superstructural atoms. 

The practical procedure proposed in papers I and 
II may be summarized as follows: 

(1) A mathematical model of the structure is con- 
structed according to which one or more independent 
pseudotranslations u~, i = 1, 2, 3 , . . .  may be simul- 
taneously present. For each atom in rj suffering 
pseudotranslational symmetry, m n l n 2 n 3 . . ,  equi- 
valent atoms can be found at 

C s ( r j  -{--/,,lUl -~-/J2u2--{-/J3u3-Jff... ), 

where 

l < s <_ m, O <_ ~,i <_ ni - 1 .  

Then the structure factor equation may be defined as 
Ip 

Fh = Y~ fj E exp [2rrihCs(rj + VlU, + v2u2 
j = l  vl ,v2,v3,...,s 

tp + tq 

-It" //3U3 -{ - ' ' "  )]-{- E f j  ~ exp(21rihC~r:). (1)  
j = t p + l  s=l  

Equation (1) may be rewritten as 
tp + tq 

Fh = E fjgj, (2) 
j = l  

where 

-~s in  (nlTrhRsul) sin (nz~'hR~u2) gj= 
s=l sin (TrhRsul) sin (TrhRsu2) 

sin (n37rhRsu3) 
X • • * 

sin ('rrhRsu3) 

[ ( + n l - 1  + n 2 - 1  
xexp  2zrihC~ rj 2 u~ 2 u2 

2 u 3 + .  •. 

if j -  tp, and 

m 
g: = ~ exp (27rihCsrj) 

s=l  

if j >  tp. 
(2) For a given h 

where 

(3a) 

a h = ( n , n 2 n 3 . . .  )Th/m.  

Yh is the number of times for which algebraic 
congruences 

h R s u i = 0 ( m o d l )  for i =  l, 2, 3, . . . 

are simultaneously satisfied when s varies from 1 to 
m. The fractional scattering powers Y.q/Y~N and 
Yp/Y./v = (1 --Y~q/~N) are calculated according to 

(IEhl 2)-~h E~ 
1 - - a h  - - ~ N  (3b)  

or to 

((IE~,]2) - 1) ~p 
- - -  (3c)  

a h -  1 ~ N  

where the averages are taken over reflexions with a 
fixed value of a. 

Fh is defined to be a superstructure reflexion if 
Th=0 (for these ([E~12)=~q/~N) ,  otherwise Fh is a 
substructure reflexion. The maximum value of y is 
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m; consequently the maximum value of a is 
/ ' 1 1 / ' / 2 / ' / 3  . . . .  

(3) Structure factors are renormalized according to 

/[( El, = Fh eh C~h Ep -F ~q 

Only the largest Eh are used in an active way in the 
phase determination process. 

(4) The distribution of the triplet phase q)= 
q~h--q~k--q~h-k is found to be of von Mises type: the 
maximum of the distribution occurs always at 2~r, 
and the concentration parameter is given by 

A(h, k, h - k )  = 2 ] E h E k E h - k ] / [  S(h ,  k, h - k ) ]  ~/2 

where 

N(h, k, h - k )  

_ (~h [~ ]~  + [ ~ ] ~  )(~d ~2]~ + [~ ]~ ) (~ . -~ [~2 ]~  + [~2]~) 
{ ( ~ / m ) [ o . 3 ] p (  2 2 2 n , n 2 n 3 . . .  ) + {or3]q}2 

3 is the number of times for which 

hR~u~ -= 0 (mod 1), hR~u2- 0 (mod 1), 

(4) 

hR~u3- 0 (mod 1) , . . .  

kR~u, = 0 (mod 1), kR~u2-= 0 (mod 1), 

kR~u 3 - 0 (mod 1) , . . .  

(h-k)R,u~ -- 0 (mod 1), ( h -  k)Rsu2- = 0 (mod 1), 

( h -  k)R~u3 -- 0 (mod 1) , . . .  

are simultaneously satisfied when s varies from 1 to 
m. Obviously, /3-< m: furthermore/3 cannot exceed 
the minimum of Th, ~/k and '~h-k. 

Even if the procedure works quite well in most 
practical cases, it suffers some limitations: 

(i) Real substructures often do not exactly comply 
with the mathematical model described in step 1 (i .e.  
atoms related by pseudotranslational symmetry are 
not exactly located or are of different nature). Such 
a situation involves a correlation between the super- 
structure and the substructure which was not taken 
into account by our model. 

(ii) p atoms and q atoms may be of different type 
and may have different temperature factors: then the 
fractional scattering p o w e r s  Eq/SN and ~ . p / ~ N  are 
unknown functions of (sin 20)/A 2. In this view their 
estimates through the average (1E'[ 2) as described in 
step 2 have different accuracy at the various 
(sin 2 0)/A 2. 

In spite of these limitations the renormalization 
procedure (step 3) may in principle almost always be 
satisfactorily performed. However, if some heavy 
atoms are present the method does not provide the 
species and the number of atoms suffering 
pseudotranslational symmetry. The unfavourable 
consequence is that [0"3]  p and [0"3]  q a r e  not accessible 

v ia  the statistical analysis of intensities so that 
N(h, k, h - k )  is not exactly computable v ia  (4). 

For practical applications heavy atoms were sup- 
posed to be equally distributed in the substructural 
as well as in the superstructural part. In that case (4) 
was replaced by 

N(h,  k, h - k )  = 

where 

(C~hp + q)( t~kp + q)(t~h_kP + q) 
2 2 2 )+q]2 

[ ( f l / m ) p ( n , n 2 n 3  . . . 

P = L~J,,, Y.N ' q = -5  • (5) L<,JNYN 
In the present paper and in paper IV a more general 
mathematical model is proposed which can take into 
account a large variety of non-ideal substructures. 

It will be shown that some parameters characteriz- 
ing the nature of the superstructure will still remain 
unknown (namely the parameters [0"3]  p and [0"3 ]  q 

after the use of the new model) but some recipes will 
be obtained which make the phase determination 
process more robust. 

2. The new mathematical model 

Any crystal structure possessing spherical atoms can 
be described by means of the electron density 
distribution 

tp + tq 

p(r)= 2 E pJ.-,.~2.~, .... 
j =  ! Vl,  v2,1,,3,. . . ,5 

X [r - -  Cs(r j  +//IUI-J¢/J2U2-~/)3U3-F... 

+ A rj,~,....~,, )] (6) 

if appropriate choices of the atomic densities 
pj,~,,~2,~, .... and of the shift parameters drj,~,,~,~., .... are 
made. The Fourier transform of (6) gives 

tp + tq 

F.= E E (£+A£.~,.~,.~,.) 
j = l  /~ i ,  v2,1.,3,..., s 

x exp [2~'ihC.~(r¢ + ~',u, + V2U2+ //3U3 "~- . . . 

+ a rj.~,..,~,....)], (7) 

where fj is the scattering factor of the j th  atom with 
position vector rj, (fj + Afj.~,.~2.~;...) is the scattering 
factor of the atom positioned at ( r j+v,u~+v2u2+ 
v3u3 + . . . +  Arj.~,..~,.,. ). Afj ...... ...~, .... may be positive or 
negative: without loss of generality it wi l l  always be 
assumed that Afj.~,.,,2..~ .... > ( - f / )  in order to preserve 
the positivity of the electron density. 

Specific cases are: 
(a) No pseudotranslational symmetry occurs: then 

Arj.~,,~,..~ .... and/or A~.,,,.~.,,,., .... are sufficiently large 
and numerous. 

An ideal pseudotranslational symmetry occurs: 
then both Arj.~,,~,,,,~ .... and 3fj,,,, .~,,,,  .... vanish for j -  < tp 
and are sufficiently large for j -> (tp + 1). 
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(b) If  p=(mtpn ln2n3 . . . )  atoms related by 
pseudotranslational symmetry are ideally located but 
of different type and q atoms have uncorrelated posi- 
tions, then the positional shifts Arj,~,,1,~,~, .... vanish for 
j<-tp while they are sufficiently large for tp<j<- 
tp + tq. In addition Afj,1,,.1,~,~ 3 .... do not all vanish for 
j <-- tp [the special case of missing atoms corresponds 
to Afj.1,,.1,~.~ 3 .... = ( - ~ ) ] .  

The following change of variables will prove use~l :  
in (7), for j <- tp, f j+  Afj,1,,,v~,1,, .... is replaced by fj + 
t~fj,1,,,1,~,~ 3 ..... where f~ is the mean scattering factor 

AA A A 

A A 

A 

A 

A A 

A A 

Y 

A J~ J~_.~ 

A 

% 

A 

Oq = 0 -Op 

6L)p = OpOp 

Fig. 1. Gaussian 'atoms' are located in a one-dimensional unit cell. 
Three heavy atoms satisfy the pseudotranslational vector u = a/4, 
the fourth has been missed. Four light atoms belong to pq. 

AAA A 
A % % A 

A A 

A A A 

Oq = 0 -Op 

b~p: Op- '~p 

Fig. 2. Gaussian 'atoms' are located in a one-dimensional cell with 
a pseudotranslation u = a/4. Atoms related by u are of the same 
type but slightly shifted from ideal positions. 

obtained when the average (for fixed j )  is calculated 
over the atomic positions 

( r j  ~t_/~lU 1 31_/)2u 2 .~_/./3u3 3 1 _ . . . ) ,  

O<- vj <- n i - 1 ,  i = 1 , 2 , 3 , . . . .  
A 

fj is therefore the j th  scattering factor of the so-called 
average or Tak6uchi substructure tip(r) (Tak6uchi, 
1972). 

Under these conditions (7) may be written as 

lp A 

F h :  E fj E exp [27rihCs(rj + v,u, 
j = l  vl, 1,2, b'3t...,s 

-~- //2U2-1 t- /~3U3 3 1 - . . . ) ]  

+ Y, 8fJ,1,,,v2,~3 .... Y~ exp,[27rihCs(rj+ vlul 
j = 1 v I , 1'2, V3,...,S 

31- //2U2 "t- /J3U3 " ~ - . . . ) ]  

I - t - I  m 

+ ~ fj exp (2rrihC~rfl 
j = t p + l  s = l  

= (Fh)~ + (Fh)p_ e + (F~)q (8) 
where the meanings of the symbols are clear. (Fh)p 
corresponds to the structure factor of the average 
structure according to Tak6uchi (1972). 

In Fig. 1 a unidimensional model structure p(x)  is 
shown: for the pseudotranslational vector u = a / 4  
(where tp = 1 and tq=4) tip(X), pp(X) ,  tiq(X) and 
~ t i p ( X )  : tip(X)--pp(X) are given. 

(c) Atoms related by pseudotranslational symmetry 
are equal but not ideally located (see Fig. 2). Then 
Afj,1,,,1,2,~ 3 .... = 0 for j <- tp, Arj,1,,,1,~,1, 3 .... # 0 but small for 
j<-tp, Arj,~,,~,~3 .... ~ 0  and large for tp+l<_j. In this 
case (7) reduces to 

lp 

Fh = ~ f j  ~ exp [27rihC.~(b + VlU~ 
j ~ l  1,1,1,2, V3,...S 

-Jr- /,'2112 "q- //3U3 q-... ~- ~r j ,  vbv2,v3,...) ] 

tq m 

+ Y~ fj ~ exp (27rihC~rfl, (9) 
j = t p + l  s = l  

where [j is the j th  position vector of the average 
substructure tip(r), and 8rj,,,,1,~,1,3... satisfy 

[j + 8rj,~,,v~,,3 .... = rj + A rj,,,,1,2,~3,.... 

(d) Atoms related by pseudotranslational sym- 
metry are of different type and are also shifted from 
ideal positions. Then Afj,~,,1,~.v 3 .... and A rj,~,,1,~,1, 3 .... are 
not too large for j-< tp. 

3. Pseudotranslational symmetry and statistical effects 
on the reciprocal space 

3(a) 

In paper I a procedure was described which, for 
ideal pseudotranslational symmetries, is able to 
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Table 1. Main data for four randomly generated structures with space group P1 differing by a pseudotranslation 
vector u = a/3 (when aM = 3) 

The values in the columns headed by Y-p/Y~N, F.q/Y~N, F.O/FN and F.p-JY~N are true values, calculated via the integrals of the scattering 
factors for Na and C 

S t r u c t u r e  ( T y p e ) p  tp p ( T y p e ) q  q ~.p/~..N ~.q/~..N ~ . ~ / ~ N  ~' .p-~/~.N ([ E~12)~p~ 

S1 C 6 18 C 18 0"50 0"50 0"50 0-0 0-49 
$2 C 6 12 C 18 0.40 0"60 0.27 0.13 0"79 
$3 Na 6 18 C 18 0.83 0.17 0.83 0.0 0-16 
S4 Na 6 12 C 18 0.75 0.26 0.50 0.24 0.60 

estimate the scattering powers ~p and Eq via a statisti- 
cal analysis of diffraction data. The meaning of those 
estimates is unclear when that mathematical model 
is applied to real cases. In particular, it seems impor- 
tant to ascertain which relation exists between that 
estimate of ~p and the scattering powers of the 
Tak6uchi substructure or of the so-called reduced or 
Buerger (1956) substructure. While this problem does 
not exist for ideal pseudotranslational symmetries 
(when the two substructures coincide), for real ones 
it is Of great importance because it can affect the 
efficiency of the phasing process. 

Let us examine the various cases mentioned in § 2. 

3(b) Case (b) 

If atoms related by pseudotranslational symmetry 
are ideally located but of different type then the 
experimental values (IE~,[ 2) for the various classes 
of reflexions provide estimates [see (A.8) of the 
Appendix] for 

and 

Y~N aM -- 1 

where a M is the maximum value of ah. More precisely 

(1 - (]Etl2)sup~r) = Z~ 1 Zp-~ 
EN aM-- 1 EN " 

(10) 

(IE~'12)super= q C~M - 1 EN " 

It may be concluded that: (1) in the absence of 
supplementary information Y~/Y, N, L - d r .  N, L/E N 
are in general not accessible from the statistical analy- 
sis of diffraction data; (2) Y,~/Y~N >-- (1 -(IE~,12>super) 
and ~q/2N <- (IE;12)supo~. 

In order to verify that our conclusions hold in 
practice four random P1 structures have been gener- 
ated for which a pseudotranslation u = a/3 has been 
applied to 6 = six atoms. 

In Table 1 the main data for the four structures are 
shown: S1 and $2 are equal-atom structures, in $3 
and $4 p atoms and q atoms are of different type. In 

order to generate a non-ideal pseudotranslational 
symmetry, one of three atoms related by u has been 
omitted in $2 and $4 (thus only 12 atoms of p type 
instead of 18 are present there). Data in Table 1 
closely satisfy relations (10) and show how important 
the contribution of ~p-~/~N may be in certain cases. 

3(c) Case (c) 

The case in which atoms related by pseudotransla- 
tional symmetry are equal but not ideally located (see 
Fig. 2) may be treated by squaring (9): 

'P ( (IF lb E1 f) E exp [2zrihC~(/JlUi-{-/.~2U2 
• = s, vi, v2,/~3,... 

\ v l ,v j ,v j  .... 

+ b'3U 3 Jr- + t~rj, v|,v2,v 3 .... ' , • • • ~ /PlU I - -  /]2U 2 

- . . . -  ~r~,~i,~,~.~,...) ])  + Zq. P ; U 3  
i 

! 

If the shifts 6rj,~,,~2,~ 3 .... are assumed to be equally and 
normally distributed then the quantity (ah ~p) in (3) 
has to be replaced (Mackay, 1953) by 

{exp [-K([Br[2)(sin 20)/h2]}ahY~O, (11) 

where K is a constant not defined here and ([6r[ 2) is 
the average square shift from ideal to actual atomic 
positions. According to (11) non-vanishing ([6r[2)'s 
cause a transfer of intensity from substructure to 
superstructure reflexions, which varies with resolu- 
tion. This transfer may be assumed to be linear in the 
permitted range of (sin 0)/h if (]Sr] 2) is small enough 
(large shifts should destroy the pseudotranslational 
symmetry). 

Mathematical considerations presented in the 
Appendix for case (b) will hold in this case too: in 
particular (A.2) and (A.5) are still valid so that infor- 
mation may be obtained through (A.8a) and (A.8b) 
o n  

( ~  aMl--l"f---~N r~) 

and 

( ~_~N 4 aM 
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This time, however, as many values of 

EN a M - 1  EN 

will be obtained as the number of ranges of (sin 0)/A 
into which reciprocal space has been divided. In Fig. 
3 for three random structures (labelled $1, S1M, 
SIMM) the values of 

( IE~,12)sup~r = + - -  
a M - -  l 

are shown at various (sin 0)/A, together with corre- 
sponding least-squares straight lines. It may be 
observed that: 

(1) S1 is a structure with ideal pseudotranslational 
symmetry (see Table 1), for which the value of 

E ~2 (1 ,I )super should not change on average with 
(sin 0)/A. 

(2) S1M and S1MM are obtained from S1 b~, 
randomly shifting p atoms by (]~r I) = 0.2 and 0.3 A 
respectively. Different slopes of the least-squares 
straight lines are obtained for the two structures in 
accordance with expectations. Increasing values [with 
(sin 0)/A] of (IEhl2)super are due to the increasing 
contribution of ~,p-~/~N. 

(3) If a deviation from an ideal pseudotransla- 
tional symmetry is only due to positional shifts of 
equal atoms from ideal positions then an approximate 
estimate of Eq/EN (and therefore of Ep/EN) is avail- 
able, which is the value of the straight line at 
(sin O)/A = O. 

3(d) Case (d) 

If atoms related by pseudotranslational symmetry 
are of different type and are also shifted from ideal 
positions, then the effects described in §§ 3(b) and 
3(c) will be present simultaneously. In particular, the 
slopes of the !east-squares straight lines will again be 
defined by the average shifts (18rl~), but their inter- 
cepts at (sin 0)/A =0 will no longer coincide with 
Y,~/Y~N, but with (Y@/Y~N)--As, where As is the 

value of 

a M -- l 

calculated in § 3(b). 
In Fig. 4 the least-squares straight lines are shown 

for the real structures listed in Table 2. They appear 
to be affected in different ways by displacive devi- 
ations from ideal pseudotranslational symmetry (in 
good agreement with structural data to be described 
in § 4 of paper IV), while replacive deviations still 
remain unknown. 

4. The r e n o r m a l i z a t i o n  p r o c e d u r e  

In accordance with (A.7) 

E h  = F h / { e .  [ah ( E , ~ - - a 2 - 1  Ev-,~) 

( oM )]),,2 
+ E,,-,~+E,, 

= E a h 
a M - -  1 

+ aM Y"P-~ 4- 

a / ~ -  1 ZN 

= E W ( I E ; , I 2 )  ' /~ (12) 

where (IEhl 2) is calculated at the (sin 0)/A corre- 
sponding to h. 

Equation (12)justifies, from a theoretical point of 
view, the empirical Hauptman & Karle (1959) sugges- 
tion of renormalizing E' by simply rescaling (IE'I2> 
to unity for the various classes of reflexions. In addi- 
tion the present theory warns the reader that care of 
the Ihl values has to be taken into the renormalization 
process; furthermore, paper II suggests that a record 
has to be taken also of the estimates for Ep/EN 

o5 de d7 a8 d9 11o 

$1 SIM S1MM 

Fig. 3. (I ' 2 Eh[ ),uper versus  (sin 2 0)/A 2 and least-squares straight 
lines for three r andom structures. 

0.5" 

0.4" 

< I e" 12 >super 

FERRI 

½ 

02 0.3 04 

p o c t  ," 

~ C,ME 
FREIES 

FEGA 

d5 o16 07 0.7 08 09 1.o 

Fig. 4. (IE~,12)super versus  (sin 2 2 0)/A least-squares straight lines for  
structures listed in Table  2. 
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Table 2. Real test structures: code title and chemical 
formula, space group, pseudotranslational vector u, 

references 

Crystal Space 
structure group u References 

Freieslebenite P2Ja, Z---4 a /2+b/3 lto & Novacki 
PbAgSbS3 (1974) 

Mesolite ~ Fdd2, Z = 16 a/3 Adiwidjaja (1972) 
Na2Ca2Al6SigO3o.8 H20 

Ferri P2t/n, Z = 4  (a+b)/2 Christidis & 
F%(SOa)3 Rentzeperis (1975) 

Fega P63/mmc, Z = 2 ¢/3 Cascarano, 
FezGa2S s Dogguy-Smiri & 

Nguyen-Huy Dung 
(1987) 

Cimetidine Cc, Z = 4  (a+c)/2 Koji6-Prodi6, 
C to H 16N6 s. H 20 Ru~.i&Torog, 

Bresciani-Pahor & 
Randaccio (1980) 

Pocro B2/m, Z =2 a /6+c/2  Nguyen-Huy Dung, 
KCrsSe 8 Vo-Van Tien, 

Behm & Beurskens 
(1987) 

and Eq/ZN in order to use them for triplet phase 
estimation. 

In a more convenient way (12) may be written, 
according to (A.6a) and (A.6b), as 

E t2  Eh= E~,/[ah(1-(I d )sup~r)+<lEhlZ)supe,] w2, (13) 

or, more generally, according to (A.8a) and (A.Sb), as 

<1 E'I~> - 1 (<l E_'~!_- a,  
Eh = E~, ah + (14) 

a i -  1 \ 1 -  ai  ' 

where the averages are made over reflexions with 
fixed a~ value. In practice the new normalization 
procedure may be described as follows: 

(a) IE'I moduli are catculated by the usual Wilson's 
plot and pseudotranslational symmetry is identified 
via statistical analysis of diffraction data (see paper I). 

(b) (IE'12)~per is plotted as a function of (sin O)/h 
and a least-squares straight line is calculated. 

(c) Renormalization according to (13) and (14) is 
accomplished by use of least-squares straight-line 
values for each (sin O)/h. 

The slope and intercept of the straight line are 
passed to a subsequent program for the estimation 
of triplet invariants (see paper IV). 

A P P E N D I X  

Let us derive an expression for (]G] 2) for a crystal 
structure with a substructural unit having atoms 
(related by pseudotranslational symmetry) exactly 
located but of different nature [see point (b) of § 2]. 
For simplicity we shall assume that pseudotransla- 
tional symmetry divides reflexions into two 
homogeneous subsets, the substructure reflexions 
with ah=C~M and superstructure reflexions with 

ah = 0. From equation (8) 

([ Fd 2) = ([( Fh).el 2) + (l( Fh)p-~l 2) + (l(Fh) q[2) 

+ 2(( Fh)#(F-h)p-#) + 2(( Fh)~(F-h) q ) 

+ 2(( Fu)p_e(F_,) q ). 

If one assumes that the positions of the atomic 
peaks in pp and/3 v are uncorrelated with the atomic 
positions in pq, one may obtain 

((F,)  e(F-h) q)~-- ((Fh)p-e(F-h)q) ~- O. 

Furthermore, in accordance with definitions, for 
substructure reflexions 

(F , ) ;  = (Vh)e, (Fh)p-e = 0, (A.1) 

so that 

(I F.I 2)sub = (I(G) f)sub + (I(G) q/2)sub 

= ~ . [~ ,  Xe+X~]. (A.2) 

Since Y~ =Y.N--Y~q--Y+-#, then (A.2) becomes 

<IFh]2)s,,.b = e,[aM EN--O~M Ep-r~+Eq (I-- aM)], 
(A.3) 

from which 

Zq 4 aM Zp-____2 (<lE~,12)s~b--aM) (A.4a) 
EN aM--1 EN 1-- O•M 

o r  

~ 1 Y'+_~ ([E~,[2)~b - 1 
- -  - (A.4b) 

ZN C~M--1 Y N aM--1 

Similar observations for superstructure reflexions 
(% = 0) lead to 

<1Fh[2)super = (l( Fh)r,_ e[2>supe,- + <1( F~)q 12>~upe, 

=eh Ep_O+Eq , (A.5) 

from which 

o r  

• = - Ehl)supe,. (A.6b) 
O¢ M - - 1  

Finally the general relation (A.7) is obtained, 

( ) ([Fd2) = eh , ~ h E ~ + ~ G - ~ + E ,  (A.7) 
O~ M - - 1  

which replaces (3a). Accordingly (A.4b) and (A.6b) 
may be replaced by 

Y.e 1 Ep-e ( < I E , , I Z >  - 1) 
- -  - (A.8a) 

Z~ C~M--1 Z ~  ~ . - 1  ' 
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and (A.4a) and (A.6a) by 

Y~q _+ aM Y,p--________~_(IEhl2)--ah (A.8b) 
ZN a ~ - I  ~N 1--ah 

The average (] Ehl 2) are made over subsets of reflexions 
with fixed a. 

Equations (A.8) may be interpreted by observing 
that, while 

pp(r) d r =  j" pp(r) dr, 
v v 

it holds that 
^2 par) dr<- ~ p~(r) dr. 

v v 

The excess of scattering power of pp with respect to 
pp is completely transferred to the set of superstruc- 

E r2 ture reflexions. Thus the averages (I hi )s-b and 
t2  (IEhl)supor will lead, through (A.4) and (A.6), to 

O~ M --1 

and to 

1 

rather than to the identification of Y~IY, N, Ep-~I~'~,N, 
~q/Y~ N. Thus, even if the various subsets of reflexions 

may be renormalized by using the corresponding 
experimental values of <lFhl2>, the information (so 
useful for estimating triplet reliability) on ~ ,  ~p_~ 
and ~q is not accessible. 
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Abstract 

The mathematical model proposed in paper III of 
this series [Cascarano, Giacovazzo & Lui6 (1988). 
Acta Cryst. A44, 176-183] for describing structures 
with superstructure effects has been used to derive 
probabilistic formulas for estimating triplet 
invariants. The formulas obtained proved sufficiently 
robust to be applied successfully to a wide range of 
structures with superstructure effects, in which devi- 

0108-7673/88/020183-06503.00 

ations both of replacive and of displacive type from 
ideal pseudotranslational symmetry occur. 

Symbols and abbreviations 

Symbols and abbreviations are as in paper III 
(Cascarano, Giacovazzo & Lui6, 1988) of this series. 
Reference will also be made to papers I (Cascarano, 
Giacovazzo & Lui6, 1985) and II (Cascarano, 
Giacovazzo & Lui6, 1987). 
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